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When a gas moving at high veloci ty  v impacts against a wall ,  its temperature  rises sharply and radiation begins to 
play an important  part in the energy transfer process [1]. After compression by the shock wave the bulk of the gas begins 
to undergo radiat ive cooling,  which reduces the react ive impulse transmitted to the obstacle.  This effect may occur, for 
example ,  when low-density meteor ic  particles strike a solid wall .  

In view of the complexi ty  of the phenomenon, we shall consider the specia l  case where the impact ing mass is a plane 
layer of matter  of thickness h and density O0- We shall start by assuming that the impact  is against a rigid obstacle in a 
v a c u u m .  

Using the laws of conservation at a strong shock front, we find that during t ime  t 1 
r the layer of gas is compressed to a thickness h z, while its density Pl, pressure Pl, and 

temperature  Tl are given by the formulas: 
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Fig. I. 
We shall assume that the specific heat  of unit mass of the gas c v and the rat io of specific 

heats are constant. 

From (1) it follows that in t ime  t 1 the gas transmits to the wall  an impulse pit1 equal to the in i t ia l  momentum I0 = 
= p0hv. After compression by the shock wave, the layer of gas begins to expand into the vacuum. The corresponding re -  
act ive impulse I l = I - I 0 (here I is the to ta l  impulse transmitted to the wall),  disregarding radiat ion,  can be computed 

starting from the exact  solution of the equations of gas dynamics [2]: 

l~ ----- ~(V)Io(g(t) ----- 0.796, g(t.4) = 0.825, ~(3) ~--- 0.865). 

The coeff icient  g character izes  the e las t ic i ty  of the impact  and its value,  close to unity*, showsthat expansion usual- 
ly occurs under conditions closer to e las t ic  than inelast ic  impac t .  The radiat ion sharply reduces ~, i . e . ,  inelast ic  con-  

ditions are approached.  

The rigorous computat ion of the energy flux from the heated layer of gas requires the  solution o f t h e k i n e t i c  equat ion.  
However, in est imating the effect  of radiat ion on the react ive  impulse,  it is possible to confine oneself  to a consideration 
of the ex t reme case where the path length of the quanta is smal l  1 (p, Tz)<< h 1. This assumption is admissible ,  since it 

turns out that  the radiat ion t i m e  is much less than the character is t ic  t ime  of expansion of the plasma into a vacuum, and 
the result is re la t ive ly  independent of the method of de -exc i t a t ion .  We shall  write the expression for the react ive  impulse 

in the form: 
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where t ,  is the t ime  during which it is necessary to take the radiat ion into account ,  and T ,  is the tempera ture  at which 

radiat ion becomes important .  

For l << h I the cooling process is described by the diffusion approximat ion for the k inet ic  equat ion,  and the heat  

flux is expressed in terms of the radiat ion density gradient .  For s impl ic i ty ,  we shall  assume that  the radiat ion density is 

from the outset close to the equi l ibr ium value .  In i t i a l ly ,  even for ~ << h l ,  the  radiat ion is nonequil ibrium owing to the  

*Physically, the difference between g and unity may be at tr ibuted to the redistribution of energy among the gas 

part icles  in the nonstationary process. 
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ini t ia l  conditions, but it rapidly approaches the equilibrium value and even by the t ime the free face of the plasma has 
cooled to ~ 0.8 T 1 the discrepancy is small  [3]. At this stage the cooling of the gas is described by the equation of radia- 
tive heat transfer: 

Oc vT Oq l 04~T ~ erg (3) 
Pl Ot ~ Ox q 3 Ox l ~ bp-ng '~, ~ = 5.67. t0 -~ ' ' cm 2" sec.  deg 4- ' 

where l is the radiation path length averaged according to Rosseland and given in the form of an iuzerpolation formula. 
The boundary conditions for Eq. (3) are: 

q (0, t) ~--- 0, q (hi, t) ~--- 26T d (h~, t) < 6T 4 (0, t) . (4) 

The last condition follows from the diffusion relation 

Oq 
q=2c~T a - l - ~ x  for l-~ 0 

and expresses the requirement that the kinetic flux at the boundary with the vacuum be equal to half the diffusion flux. 

Using the method of moments [5], we can obtain a convenient formula linking the outgoing radiation flux q(h 1, t) 

and the temperature at the wall T (0, t) (Fig. 1). Equation (3) is equivalent to an infinite number of integral relations ob-  
tained by multiplying (3) by x m (m = 0, 1, 2 . . . .  ) and integrating the expressions obtained with respect to x from 0 to h I. 

We shall satisfy (3) approximately, confining ourselves to the two relations for m = 0 and m = 1: 

h, 

pl " ~  cvT d~ = - - q  (hl, t) , (5) 
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pl ~ e V T x d x - ~ - - q  (hi, t) hl-t- t6~bpl-n (6) 3k [Tk (0, t ) - - T k ( h ~ ,  t)] ( k = ( o + 4 )  . 
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To obtain an approximate solution of gqs. (4 ) - (6 ) ,  we shall use the property of intense heat transfer that makes the 

temperature distribution close to a "plateau" [6, 7]. In this case, in the integrand we can replace T with T0(t) ~ T (0, t); 

moreover, bearing in mind that at large k we can neglect the term Tk(hl ,  t) compared with Tk(0, t), if T(h  t, t) be-  
comes even slightly less than To, we find: 

lo 32 
q(hl, t ) = B ~ T o  a(t), B - -  3k ' lo---- bpl-nTo ea �9 
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As V. P. Buzdin has shown, it is somewhat more correct to give the temperature distribution in the form: 

T ~--- To(t){t - -  (x ] hl)2]I/(~'-') (8) 

analogous to that which follows from the solution of [8]. In this case 

32 F (t.5 + a) t 
B~ - -  3k(~ ' 6 --= 2 - -  (~ -t- 1) r (a -I- t) F (t.5) ' a - -  k - -  1 " (9) 

From (9) it follows that at large k the value of B 1 is close to that of B. 

It is interesting to note that the temperature distribution in the self-similar problem [8] will also be the exact solution 

of the nonself-similar problem of the propagation of a thermal wave from a source with allowance for radiation of energy 

from the front [7]. For this problem, which physically is similar to the problem of the cooling of a finite volume of gas, 

the temperature distribution is given by the solution of [8], which satisfies Eq. (3). This solution must be cut off at a dis- 
tance Xl(t ) determined by the boundary condition expressing the energy balance at the wave front 

P% -dT -{- .l (T) ac~T 4 = 6' iT (zl, t)] 
3 dx x=x~ 

(1o) 
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Since T (x, t) and the law of radiation are known (e. g. ,  S " T r, relation (10) serves as an ordinary differential 
equation for determining xl( t) .  In many cases Eq. (10) is solved in quadratures. 

In computing the radiation flux from the plasma the motion of the gas was not taken into account. This is correct if 
q is greater than the adiabatic cooling A for expansion of the gas into a vacuum. Thanks to the intense heat transfer, the 
Riemann wave can be assumed isothermal [2], and the adiabatic cooling can be computed from the formula: 

xdl) 
I OF clt :co (11) 

A = p - ~  pl dxo =pie1 ~, V -- plxo ' P = Pl ~ ,  cl 2 = RTo, 
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where x 0 is the  Lagrangian coordinate of the particle, and x 2 = Clt is the width of the Riemann wave. 

The characteristic temperature T ,  = To ( t , ) ,  giving the lower l imit  of applicabil i ty of the solution, can be found 

from the condition q = A. The upper l imit  of the temperature, at which solution (8) ceases to be correct, can be taken 
as the temperature T~, computed from the equality l (T** pl) =h I. Using (8) and (11), we find 

T,r __ pln+lhlR 1'5 hlpl n (12) 
6bB ' T**~ - -  b , v ,  = ]/'2-cvT , ,  v** = ]/2CvT** 

Figure 2 shows characteristic impact velocities at a rigid wail for an iron meteorite (solid tine) and an air jet (broken 
line). The quantities v ,  and v0~ were calculated for an iron striker of thickness h = G. 1 cm and plotted as a function of 

the density y = o0g/cm s. It turns out that in this case the parameters entering into (12) can be assumed approximately 
equa l t o  w ~ 3, h ~2 ,  y ~ 1.4,  c v ~ 8 X 107erg/g,  b ~ 8 • 10 -23 g2/cm 5 �9 deg 3. 
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The quantities v ,  and v** for the air jet were calculated on the assumption that 
h = 1 cm and are plotted in Fig. 2 as a function of a parameter y =2 X 10290 g /cm 3, 

proportional to the in i t ia l  density of the jet. 

The equation of state of a substance in plasma form is relat ively independent of 

the number of the e lement .  Therefore, Fig. 2 can be used to estimate the crit ical  
impact velocity of a number of other substances as well. Iron and air were taken only 

by of example,  since their equations of state have been most thoroughly studied [1, 

9]. 

Using (5) and (8), we get: 

Fig. 2. 911+ncvhl~dTo 

dt = - -  obBTok 

Carrying out the integration in (2), we find the expression for the reactive impulse: 

c ()~) _ 

I 1 = 1 ,  i +  ~ : ( ~ ) g ~ ( z - - i )  ' 

0 ) + 2  ( o + 3  ' )~= " 

( i s )  

Since to + 2 is of the order of 5-6, for a v even slightly in excess of v ,  the terms X c~ and X c~ can be neglected. 

Therefore from (13) it follows that I 1 remains bounded and practically equal to the reactive impulse for impact at the 

cri t ical  velocity v , ,  the ratio t !A 0 decreasing as v - Z  Formulas (15) are valid if the obstacle is rigid (i .  e . ,  the density 

P00 >> P0) and does not conduct heat.  However, at large impact velocities part of the radiation penetrates the obstacle, 

dispersal of ~hich increases the l imit  value I , .  

The boundedness of the reactive impulse is attributable to the fact that the characteristic t ime  of radiation cooling 
T~ ---- p~h12c~ / (~bBTt ~-~ << ~2 --= h~ / c~, where r 2 is the t ime  of gas-dynamic expansion; therefore in the t ime the plasma 

takes to cool to a temperature T ,  the wail can not succeed in acquiring much momentum.  

Thanks to the strong temperature-dependence of the radiation flux q ~ T k for T < T ,  adiabatic cooling sharply pre- 

vails over q. For the purposes of a qualitative es t imate  of the addit ionally radiated energy Q for T < T,  it is possible to 

assume that, as before, q is expressed by (7), but the temperature of the "plateau" T0(t) is determined by the adiabatic 

cooling, i . e . ,  
t '  t~ 

hi d---i- = t - -  t ,  g BVo dr, Q = q (To) dt ts ~ -~, ) 
t ,  .r: , 
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Carrying out the integration,  we find that for large k 

Q i 
E--. "~ 4k--------i ( E .  = h*plcvT,)  . 

less on impac t ,  and the cr i t ica l  impact  veloci ty  increases. 

Using the laws of conservation for the two waves arising at the point 
of impact  (F ig .  3), we find 

Therefore Q is only a small  part of the energy remaining in the substance after cooling to the temperature T. ,  and its 
effect on the react ive  impulse is smal l .  

If the density of the impact ing object  and the obstacle are of the same (Z} 

order, the wall  can not be assumed rigid; therefore the temperature  rises ,'< ,k<,0 
I --4J  % 

Fig.  3. 
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A t  the moment t 1 the shock wave reaches the boundary with the vacuum and the temperature  of the plasma quickly 
fails to a value T1. ~ T., which depends re la t ive ly  l i t t le  on the thickness of the radiating layer .  Therefore,  on com-  
paring (1), (12), and (14), we can write the cr i t ica l  impact  veloci ty  w. in the approximate  form w .  ~ {1 -t- e v .  

If the impact ing object  and the obstacte are made of the  same mate r ia l ,  then on impact  we get the system of waves 
shown in Fig.  3 ( the parameters of the gas in regions 1 and 2 are denoted by the subscripts 1 and 2, respect ively) .  Owing 
to t he  intense heat  transfer the temperature  of the plasma beyond the shock waves is close to the "pla teau" and re la t ive ly  
independent of the coordinate,  i . e . ,  T 1 = T 2 ~ T. .  Therefore the part of the energy Ql and Q2 dissipated at the shock 
fronts is quickly distributed throughout the gas and par t ia l ly  radiated into the vacuum. The energy balance  at shock fronts 
2 and 1 may be written thus: 

D~ 2 __ (D~--u2) 2 q_ "r pz ~_ Q2 
2 2 - - ' r - - t  p2 

( D I - - u l )  2 - -  ( D I - - u ~ )  2 
~- ql �9 2 2 

(15) 

Taking into account (15) and using the laws of conservation of mass and momentum at a strong shock front [10], it is 
easy to find the parameters  of the plasma in region 2: 

~,U2 
u~--~ V R T t ( ~ , - - t ) ,  pe=Lpo,  D~ = ~,- -1  ' p 2 = p 2 R T 1 , ;  

Q~ . . . .  i RT1, O~ = - ~  ~ ,  D~ = - f  - -  ~ - - V - - ~  ' 

P_L c + l =MZ_  

(1G) 

The decay of the shock wave AB into two waves 1 and 2 occurs only if P2 > Pl and, hence,  X > p. This is fu l f i l l ed  
i f  the isothermal  analogue of the Mach number M > ~ - -  l~ If  M < ] /~- -  t, then X < p, and energy is supplied to shock 
front 2, while wave 1 degenerates into an isothermal  rarefact ion wave. 

Using the relations at a strong shock front and for an isothermal  Riemann wave ['2] 

u 2 = u l - - c i  In  ( P 2 / P d ,  u = u l + c i + x / t  , 

we find that  the gas parameters  in region 2 are de termined by the same relations (16), in which, however,  X is expressed 
in terms of M and g in accordance with the formula:  

M + l n ~ / ~ , = y ~ - - I  . 

Obviously, in this  case the radiat ion from the plasma will  be intense only if the energy withdrawn from the two shock 
waves is greater  than the adiabat ic  cooling at the boundary with the vacuum, i . e . ,  

pl (ul - -  D1) Q1 .~- poD,Q, > plc~ s o r  ]/-%~ -Jr .i/- ~ >/~, ~ _  
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This criterion is at the same t ime a necessary condition for the steadiness of the process, which may continue to 
exist until  the relaxation wave (broken line in Fig. 3) overtakes the strong shock front. Using (14), (16), and (17), it is 
easy to determine the velocity w, at which conditions (17) can exist. Thus, for example,  

%~8 .4 ,  M~-3.06,  w ,~  2.73 v, for y = t . 4  

~,--  t4.7, M = 4 ,  w ~ 2.53 v, for y-~- t.;2 . 

From the above it follows that when a mass m 0 impacts at high velocity against a compressible obstacle, complex 
wave interaction occurs, and the problem of computing the reactive impulse becomes a very difficult one. Therefore we 

shall confine ourselves solely to a qualitative estimate of the phenomenon. 

As Stanyukovich [11] has shown, at high impact velocities, if we disregard radiation, the increase in reactive i m -  
pulse is proportional to the square of the meteorite velocity 

l i  ~ ~ E m i ,  m i  ,'~ v z, Eo  ~ m o v  z - +  I t  "~ v Z ,  

where m I is the crater mass. If we take radiation into account, then E and m 1 are reduced. 

We shalt divide the process of impact into two stages, assuming that up to the moment of release of the principal 

part of the radiation the shock wave is damped in the obstacle in accordance with the law [12, 13] 

p ~ p o ( m o / m ) L  po ~ v 2 

where m is the entire mass of the gas beyond the shock wave, and p is the pressure at the wave front. Up to the moment 

m = m,,  when the gas cools to the temperature Te, at which radiation is cut off, the pressure at the front falls to p, = 

= p0(m0/m,) y.  

Since p, " T, in order to estimate p,, we must substitute the characteristic dimension m i  Is  for h 1 in the radiation 

cutoff condition q =A [formula (12)]. From (12) we find p~ ~ it. ~ mJ .  z = '/~(0~ +2.5)  and, since P0 ~ v~, m .  "~ 
v 2 t ( - + z ) .  

After the plasma has cooled to the temperature T,,  damping of the wave proceeds in accordance with another law 

and the exponent v approaches unity [13], i . e . ,  p ~ p . m ,  / m for m > m,. 

The mass of the mater ial  of the obstacle m 1 contributing to the reactive impulse is determined from the condition 

that at the wave front p reaches a crit ical  value P3 which depends on the properties of the material ;  therefore m~ 
.'~ p . m . / p a .  The energy E i remaining in the material  after the release of radiation is also proportional to ,"p,m, ; there-  

fore 

I i  . . .  ~ E l m l  .-. p , m ,  .... v ~, • = 2 ( l  + z) / (v  + z) . 
(is) 

In the first stage of impact ,  while it is possible to neglect adiabatic cooling, the process of energy transfer to the 

material  of the obstacle proceeds in accordance with a law close to that of inelastic impact .  In this case all  the gas flies 

in the direction of impact ,  and its momentum is equal to the in i t ia l  momentum; then v = 2 [12]. 

From (18) it follows that at an impact velocity v > w. greater than the cri t ical ,  the reactive impulse increases 
approximately as )~0 N p, i . e . ,  considerably more slowly than for the dispersal of a vaporized meteorite and part of 

the obstacle without radiation.  

The author wishes to thank A.S.  Kompaneets, and Yu.P.  Raizer for valuable suggestions. 
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